Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
N/A (Ed.)Abstract Partial differential equation (PDE)-constrained inverse problems are some of the most challenging and computationally demanding problems in computational science today. Fine meshes required to accurately compute the PDE solution introduce an enormous number of parameters and require large-scale computing resources such as more processors and more memory to solve such systems in a reasonable time. For inverse problems constrained by time-dependent PDEs, the adjoint method often employed to compute gradients and higher order derivatives efficiently requires solving a time-reversed, so-called adjoint PDE that depends on the forward PDE solution at each timestep. This necessitates the storage of a high-dimensional forward solution vector at every timestep. Such a procedure quickly exhausts the available memory resources. Several approaches that trade additional computation for reduced memory footprint have been proposed to mitigate the memory bottleneck, including checkpointing and compression strategies. In this work, we propose a close-to-ideal scalable compression approach using autoencoders to eliminate the need for checkpointing and substantial memory storage, thereby reducing the time-to-solution and memory requirements. We compare our approach with checkpointing and an off-the-shelf compression approach on an earth-scale ill-posed seismic inverse problem. The results verify the expected close-to-ideal speedup for the gradient and Hessian-vector product using the proposed autoencoder compression approach. To highlight the usefulness of the proposed approach, we combine the autoencoder compression with the data-informed active subspace (DIAS) prior showing how the DIAS method can be affordably extended to large-scale problems without the need for checkpointing and large memory.more » « less
-
N/A (Ed.)Abstract This work unifies the analysis of various randomized methods for solving linear and nonlinear inverse problems with Gaussian priors by framing the problem in a stochastic optimization setting. By doing so, we show that many randomized methods are variants of a sample average approximation (SAA). More importantly, we are able to prove a single theoretical result that guarantees the asymptotic convergence for a variety of randomized methods. Additionally, viewing randomized methods as an SAA enables us to prove, for the first time, a single non-asymptotic error result that holds for randomized methods under consideration. Another important consequence of our unified framework is that it allows us to discover new randomization methods. We present various numerical results for linear, nonlinear, algebraic, and PDE-constrained inverse problems that verify the theoretical convergence results and provide a discussion on the apparently different convergence rates and the behavior for various randomized methods.more » « less
-
This paper presents a regularization framework that aims to improve the fidelity of Tikhonov inverse solutions. At the heart of the framework is the data-informed regularization idea that only data-uninformed parameters need to be regularized, while the data-informed parameters, on which data and forward model are integrated, should remain untouched. We propose to employ the active subspace method to determine the data-informativeness of a parameter. The resulting framework is thus called a data-informed (DI) active subspace (DIAS) regularization. Four proposed DIAS variants are rigorously analyzed, shown to be robust with the regularization parameter and capable of avoiding polluting solution features informed by the data. They are thus well suited for problems with small or reasonably small noise corruptions in the data. Furthermore, the DIAS approaches can effectively reuse any Tikhonov regularization codes/libraries. Though they are readily applicable for nonlinear inverse problems, we focus on linear problems in this paper in order to gain insights into the framework. Various numerical results for linear inverse problems are presented to verify theoretical findings and to demonstrate advantages of the DIAS framework over the Tikhonov, truncated SVD, and the TSVD-based DI approaches.more » « less
An official website of the United States government
